Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Biomedicines ; 12(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38255268

RESUMEN

Lung surfactant is a mixture of lipids and proteins and is essential for air breathing in mammals. The hydrophobic surfactant proteins B and C (SP-B and SP-C) assist in reducing surface tension in the lung alveoli by organizing the surfactant lipids. SP-B deficiency is life-threatening, and a lack of SP-C can lead to progressive interstitial lung disease. B-YL (41 amino acids) is a highly surface-active, sulfur-free peptide mimic of SP-B (79 amino acids) in which the four cysteine residues are replaced by tyrosine. Mammalian SP-C (35 amino acids) contains two cysteine-linked palmitoyl groups at positions 5 and 6 in the N-terminal region that override the ß-sheet propensities of the native sequence. Canine SP-C (34 amino acids) is exceptional because it has only one palmitoylated cysteine residue at position 4 and a phenylalanine at position 5. We developed canine SP-C constructs in which the palmitoylated cysteine residue at position 4 is replaced by phenylalanine (SP-Cff) or serine (SP-Csf) and a glutamic acid-lysine ion-lock was placed at sequence positions 20-24 of the hydrophobic helical domain to enhance its alpha helical propensity. AI modeling, molecular dynamics, circular dichroism spectroscopy, Fourier Transform InfraRed spectroscopy, and electron spin resonance studies showed that the secondary structure of canine SP-Cff ion-lock peptide was like that of native SP-C, suggesting that substitution of phenylalanine for cysteine has no apparent effect on the secondary structure of the peptide. Captive bubble surfactometry demonstrated higher surface activity for canine SP-Cff ion-lock peptide in combination with B-YL in surfactant lipids than with canine SP-Csf ion-lock peptide. These studies demonstrate the potential of canine SP-Cff ion-lock peptide to enhance the functionality of the SP-B peptide mimic B-YL in synthetic surfactant lipids.

2.
J Biol Chem ; 299(12): 105374, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866631

RESUMEN

Iron delivery to the plasma is closely coupled to erythropoiesis, the production of red blood cells, as this process consumes most of the circulating plasma iron. In response to hemorrhage and other erythropoietic stresses, increased erythropoietin stimulates the production of the hormone erythroferrone (ERFE) by erythrocyte precursors (erythroblasts) developing in erythropoietic tissues. ERFE acts on the liver to inhibit bone morphogenetic protein (BMP) signaling and thereby decrease hepcidin production. Decreased circulating hepcidin concentrations then allow the release of iron from stores and increase iron absorption from the diet. Guided by evolutionary analysis and Alphafold2 protein complex modeling, we used targeted ERFE mutations, deletions, and synthetic ERFE segments together with cell-based bioassays and surface plasmon resonance to probe the structural features required for bioactivity and BMP binding. We define the ERFE active domain and multiple structural features that act together to entrap BMP ligands. In particular, the hydrophobic helical segment 81 to 86 and specifically the highly conserved tryptophan W82 in the N-terminal region are essential for ERFE bioactivity and Alphafold2 modeling places W82 between two tryptophans in its ligands BMP2, BMP6, and the BMP2/6 heterodimer, an interaction similar to those that bind BMPs to their cognate receptors. Finally, we identify the cationic region 96-107 and the globular TNFα-like domain 186-354 as structural determinants of ERFE multimerization that increase the avidity of ERFE for BMP ligands. Collectively, our results provide further insight into the ERFE-mediated inhibition of BMP signaling in response to erythropoietic stress.


Asunto(s)
Hepcidinas , Hierro , Hormonas Peptídicas , Dominios Proteicos , Proteínas Morfogenéticas Óseas/metabolismo , Eritropoyesis , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro/metabolismo , Hígado/metabolismo , Humanos , Línea Celular , Hormonas Peptídicas/química , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Secuencia de Aminoácidos , Estructura Terciaria de Proteína , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estrés Fisiológico
3.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446012

RESUMEN

Lung surfactant is a complex mixture of phospholipids and surfactant proteins that is produced in alveolar type 2 cells. It prevents lung collapse by reducing surface tension and is involved in innate immunity. Exogenous animal-derived and, more recently, synthetic lung surfactant has shown clinical efficacy in surfactant-deficient premature infants and in critically ill patients with acute respiratory distress syndrome (ARDS), such as those with severe COVID-19 disease. COVID-19 pneumonia is initiated by the binding of the viral receptor-binding domain (RBD) of SARS-CoV-2 to the cellular receptor angiotensin-converting enzyme 2 (ACE2). Inflammation and tissue damage then lead to loss and dysfunction of surface activity that can be relieved by treatment with an exogenous lung surfactant. Surfactant protein B (SP-B) is pivotal for surfactant activity and has anti-inflammatory effects. Here, we study the binding of two synthetic SP-B peptide mimics, Super Mini-B (SMB) and B-YL, to a recombinant human ACE2 receptor protein construct using molecular docking and surface plasmon resonance (SPR) to evaluate their potential as antiviral drugs. The SPR measurements confirmed that both the SMB and B-YL peptides bind to the rhACE2 receptor with affinities like that of the viral RBD-ACE2 complex. These findings suggest that synthetic lung surfactant peptide mimics can act as competitive inhibitors of the binding of viral RBD to the ACE2 receptor.


Asunto(s)
COVID-19 , Surfactantes Pulmonares , Animales , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/química , Simulación del Acoplamiento Molecular , Péptidos , Proteínas Asociadas a Surfactante Pulmonar , Unión Proteica , Receptores Virales , Surfactantes Pulmonares/farmacología , Tensoactivos
4.
Pulm Pharmacol Ther ; 80: 102209, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36907545

RESUMEN

INTRODUCTION: Hyperoxia-induced lung injury is characterized by acute alveolar injury, disrupted epithelial-mesenchymal signaling, oxidative stress, and surfactant dysfunction, yet currently, there is no effective treatment. Although a combination of aerosolized pioglitazone (PGZ) and a synthetic lung surfactant (B-YL peptide, a surfactant protein B mimic) prevents hyperoxia-induced neonatal rat lung injury, whether it is also effective in preventing hyperoxia-induced adult lung injury is unknown. METHOD: Using adult mice lung explants, we characterize the effects of 24 and 72-h (h) exposure to hyperoxia on 1) perturbations in Wingless/Int (Wnt) and Transforming Growth Factor (TGF)-ß signaling pathways, which are critical mediators of lung injury, 2) aberrations of lung homeostasis and injury repair pathways, and 3) whether these hyperoxia-induced aberrations can be blocked by concomitant treatment with PGZ and B-YL combination. RESULTS: Our study reveals that hyperoxia exposure to adult mouse lung explants causes activation of Wnt (upregulation of key Wnt signaling intermediates ß-catenin and LEF-1) and TGF-ß (upregulation of key TGF-ß signaling intermediates TGF-ß type I receptor (ALK5) and SMAD 3) signaling pathways accompanied by an upregulation of myogenic proteins (calponin and fibronectin) and inflammatory cytokines (IL-6, IL-1ß, and TNFα), and alterations in key endothelial (VEGF-A and its receptor FLT-1, and PECAM-1) markers. All of these changes were largely mitigated by the PGZ + B-YL combination. CONCLUSION: The effectiveness of the PGZ + B-YL combination in blocking hyperoxia-induced adult mice lung injury ex-vivo is promising to be an effective therapeutic approach for adult lung injury in vivo.


Asunto(s)
Hiperoxia , Lesión Pulmonar , Animales , Ratones , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Pulmón , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Lesión Pulmonar/metabolismo , Pioglitazona/farmacología , Pioglitazona/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Agonistas de PPAR-gamma , Tensoactivos/metabolismo , Tensoactivos/farmacología , Factor de Crecimiento Transformador beta/farmacología
5.
PLoS One ; 17(11): e0276787, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36327300

RESUMEN

The three-dimensional structure of the synthetic lung Surfactant Protein B Peptide Super Mini-B was determined using an integrative experimental approach, including mass spectrometry and isotope enhanced Fourier-transform infrared (FTIR) spectroscopy. Mass spectral analysis of the peptide, oxidized by solvent assisted region-specific disulfide formation, confirmed that the correct folding and disulfide pairing could be facilitated using two different oxidative structure-promoting solvent systems. Residue specific analysis by isotope enhanced FTIR indicated that the N-terminal and C-terminal domains have well defined α-helical amino acid sequences. Using these experimentally derived measures of distance constraints and disulfide connectivity, the ensemble was further refined with molecular dynamics to provide a medium resolution, residue-specific structure for the peptide construct in a simulated synthetic lung surfactant lipid multilayer environment. The disulfide connectivity combined with the α-helical elements stabilize the peptide conformationally to form a helical hairpin structure that resembles critical elements of the Saposin protein fold of the predicted full-length Surfactant Protein B structure.


Asunto(s)
Surfactantes Pulmonares , Saposinas , Estructura Secundaria de Proteína , Saposinas/metabolismo , Surfactantes Pulmonares/metabolismo , Péptidos , Espectroscopía Infrarroja por Transformada de Fourier , Tensoactivos , Disulfuros/química , Pulmón/metabolismo , Solventes
6.
Front Pediatr ; 10: 923010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783301

RESUMEN

After shifting away from invasive mechanical ventilation and intratracheal instillation of surfactant toward non-invasive ventilation with nasal CPAP and less invasive surfactant administration in order to prevent bronchopulmonary dysplasia in preterm infants with respiratory distress syndrome, fully non-invasive surfactant nebulization is the next Holy Grail in neonatology. Here we review the characteristics of animal-derived (clinical) and new advanced synthetic lung surfactants and improvements in nebulization technology required to secure optimal lung deposition and effectivity of non-invasive lung surfactant administration. Studies in surfactant-deficient animals and preterm infants have demonstrated the safety and potential of non-invasive surfactant administration, but also provide new directions for the development of synthetic lung surfactant destined for aerosol delivery, implementation of breath-actuated nebulization and optimization of nasal CPAP, nebulizer circuit and nasal interface. Surfactant nebulization may offer a truly non-invasive option for surfactant delivery to preterm infants in the near future.

7.
Respir Res ; 23(1): 78, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379243

RESUMEN

BACKGROUND: Dry powder (DP) synthetic lung surfactant may be an effective means of noninvasive delivery of surfactant therapy to premature infants supported with nasal continuous positive airway pressure (nCPAP) in low-resource settings. METHODS: Four experimental DP surfactant formulations consisting of 70% of phospholipids (DPPC:POPG 7:3), 3% Super Mini-B (SMB) or its sulfur-free derivate B-YL as SP-B peptide mimic, 25% of lactose or trehalose as excipient, and 2% of NaCl were formulated using spray drying. In vitro surface activity was confirmed with captive bubble surfactometry. Surfactant particle size was determined with a cascade impactor and inhaled dose was quantified using a spontaneously breathing premature lamb lung model supported with CPAP. In vivo surfactant efficacy was demonstrated in three studies. First, oxygenation and lung compliance were monitored after intratracheal instillation of resuspended DP surfactant in intubated, ventilated, lavaged, surfactant-deficient juvenile rabbits. In dose-response studies, ventilated, lavaged, surfactant-deficient rabbits received 30, 60, 120 or 240 mg/kg of DP B-YL:Lactose or B-YL:Trehalose surfactant by aerosol delivery with a low flow aerosol chamber via their endotracheal tube. Noninvasive aerosolization of DP B-YL:Trehalose surfactant via nasal prongs was tested in spontaneous breathing premature lambs supported with nCPAP. Intratracheal administration of 200 mg/kg of Curosurf®, a liquid porcine surfactant, was used as a positive control. RESULTS: Mass median aerosol diameter was 3.6 µm with a geometric standard deviation of 1.8. All four experimental surfactants demonstrated high surface efficacy of intratracheal instillation of a bolus of ~ 100 mg/kg of surfactant with improvement of oxygenation and lung compliance. In the dose-response studies, rabbits received incremental doses of DP B-YL:Lactose or B-YL:Trehalose surfactant intratracheally and showed an optimal response in oxygenation and lung function at a dose of 120-240 mg/kg. Aerosol delivery via nasal prongs of 1 or 2 doses of ~ 100 mg/kg of B-YL:Trehalose surfactant to premature lambs supported with nCPAP resulted in stabilization of spontaneous breathing and oxygenation and lung volumes comparable to the positive control. CONCLUSION: These studies confirm the clinical potential of DP synthetic lung surfactant with B-YL peptide as a SP-B mimic to alleviate surfactant deficiency when delivered as a liquid bolus or as an aerosol.


Asunto(s)
Excipientes , Tensoactivos , Aerosoles , Animales , Excipientes/farmacología , Humanos , Pulmón , Polvos/farmacología , Conejos , Ovinos , Porcinos
8.
BMC Pulm Med ; 21(1): 330, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686153

RESUMEN

BACKGROUND: Optimal functionality of synthetic lung surfactant for treatment of respiratory distress syndrome in preterm infants largely depends on the quality and quantity of the surfactant protein B (SP-B) peptide mimic and the lipid mixture. B-YL peptide is a 41-residue sulfur-free SP-B mimic with its cysteine and methionine residues replaced by tyrosine and leucine, respectively, to enhance its oxidation resistance. AIM: Testing the structural and functional stability of the B-YL peptide in synthetic surfactant lipids after long-term storage. METHODS: The structural and functional properties of B-YL peptide in surfactant lipids were studied using three production runs of B-YL peptides in synthetic surfactant lipids. Each run was held at 5 °C ambient temperature for three years and analyzed with structural and computational techniques, i.e., MALDI-TOF mass spectrometry, ATR-Fourier Transform Infrared Spectroscopy (ATR-FTIR), secondary homology modeling of a preliminary B-YL structure, and tertiary Molecular Dynamic simulations of B-YL in surfactant lipids, and with functional methods, i.e., captive bubble surfactometry (CBS) and retesting in vivo surface activity in surfactant-deficient young adult rabbits. RESULTS: MALDI-TOF mass spectrometry showed no degradation of the B-YL peptide as a function of stored time. ATR-FTIR studies demonstrated that the B-YL peptide still assumed stable alpha-helical conformations in synthetic surfactant lipids. These structural findings correlated with excellent in vitro surface activity during both quasi-static and dynamic cycling on CBS after three years of cold storage and in vivo surface activity of the aged formulations with improvements in oxygenation and dynamic lung compliance approaching those of the positive control surfactant Curosurf®. CONCLUSIONS: The structure of the B-YL peptide and the in vitro and in vivo functions of the B-YL surfactant were each maintained after three years of refrigeration storage.


Asunto(s)
Proteína B Asociada a Surfactante Pulmonar/química , Surfactantes Pulmonares/química , Tensoactivos/química , Animales , Estabilidad de Medicamentos , Metabolismo de los Lípidos , Proteína B Asociada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Conejos , Tensoactivos/metabolismo
9.
Curr Top Membr ; 87: 1-45, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34696882

RESUMEN

Langmuir monolayers at gas/liquid interfaces provide a rich framework to investigate the interplay between multiscale geometry and mechanics. Monolayer collapse is investigated at a topological and geometric level by building a scale space M from experimental imaging data. We present a general lipid monolayer collapse phase diagram, which shows that wrinkling, folding, crumpling, shear banding, and vesiculation are a continuous set of mechanical states that can be approached by either tuning monolayer composition or temperature. The origin of the different mechanical states can be understood by investigating the monolayer geometry at two scales: fluorescent vs atomic force microscopy imaging. We show that an interesting switch in continuity occurs in passing between the two scales, CAFM∈MAFM≠CFM∈M. Studying the difference between monolayers that fold vs shear band, we show that shear banding is correlated to the persistence of a multi-length scale microstructure within the monolayer at all surface pressures. A detailed analytical geometric formalism to describe this microstructure is developed using the theory of structured deformations. Lastly, we provide the first ever finite element simulation of lipid monolayer collapse utilizing a direct mapping from the experimental image space M into a simulation domain P. We show that elastic dissipation in the form of bielasticity is a necessary and sufficient condition to capture loss of in-plane stability and shear banding.


Asunto(s)
Lípidos , Presión
10.
Sci Rep ; 11(1): 16439, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385559

RESUMEN

Inhalation of dry powder synthetic lung surfactant may assist spontaneous breathing by providing noninvasive surfactant therapy for premature infants supported with nasal continuous positive airway pressure. Surfactant was formulated using spray-drying with different phospholipid compositions (70 or 80 total weight% and 7:3 or 4:1 DPPC:POPG ratios), a surfactant protein B peptide analog (KL4, Super Mini-B, or B-YL), and Lactose or Trehalose as excipient. KL4 surfactant underperformed on initial adsorption and surface activity at captive bubble surfactometry. Spray-drying had no effect on the chemical composition of Super Mini-B and B-YL peptides and surfactant with these peptides had excellent surface activity with particle sizes and fine particle fractions that were well within the margins for respiratory particles and similar solid-state properties. Prolonged exposure of the dry powder surfactants with lactose as excipient to 40 °C and 75% humidity negatively affected hysteresis during dynamic cycling in the captive bubble surfactometer. Dry powder synthetic lung surfactants with 70% phospholipids (DPPC and POPG at a 7:3 ratio), 25% trehalose and 3% of SMB or B-YL showed excellent surface activity and good short-term stability, thereby qualifying them for potential clinical use in premature infants.


Asunto(s)
Aerosoles/química , Polvos/química , Surfactantes Pulmonares/química , Surfactantes Pulmonares/uso terapéutico , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico , Secuencia de Aminoácidos , Humanos , Recién Nacido , Recien Nacido Prematuro , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Gates Open Res ; 3: 6, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31131369

RESUMEN

Background: The development of synthetic lung surfactant for preterm infants has focused on peptide analogues of native surfactant proteins B and C (SP-B and SP-C). Non-invasive respiratory support with nasal continuous positive airway pressure (nCPAP) may benefit from synthetic surfactant for aerosol delivery. Methods: A total of three dry powder (DP) surfactants, consisting of phospholipids and the SP-B analogue Super Mini-B (SMB), and one negative control DP surfactant without SMB, were produced with the Acorda Therapeutics ARCUS® Pulmonary Dry Powder Technology. Structure of the DP surfactants was compared with FTIR spectroscopy, in vitro surface activity with captive bubble surfactometry, and in vivo activity in surfactant-deficient adult rabbits and preterm lambs. In the animal experiments, intratracheal (IT) aerosol delivery was compared with surfactant aerosolization during nCPAP support. Surfactant dosage was 100 mg/kg of lipids and aerosolization was performed using a low flow inhaler. Results: FTIR spectra of the three DP surfactants each showed secondary structures compatible with peptide folding as an α-helix hairpin, similar to that previously noted for surface-active SMB in other lipids. The DP surfactants with SMB demonstrated in vitro surface activity <1 mN/m. Oxygenation and lung function increased quickly after IT aerosolization of DP surfactant in both surfactant-deficient rabbits and preterm lambs, similar to improvements seen with clinical surfactant. The response to nCPAP aerosol delivery of DP surfactant was about 50% of IT aerosol delivery, but could be boosted with a second dose in the preterm lambs. Conclusions: Aerosol delivery of DP synthetic surfactant during non-invasive respiratory support with nCPAP significantly improved oxygenation and lung function in surfactant-deficient animals and this response could be enhanced by giving a second dose. Aerosol delivery of DP synthetic lung surfactant has potential for clinical applications.

12.
Bioorg Med Chem Lett ; 29(13): 1628-1635, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31047753

RESUMEN

A small group of lipid-conjugated Smac mimetics was synthesized to probe the influence of the position of lipidation on overall anti-cancer activity. Specifically, new compounds were modified with lipid(s) in position 3 and C-terminus. Previously described position 2 lipidated analog M11 was also synthesized. The resulting mini library of Smacs lipidated in positions 2, 3 and C-terminus was screened extensively in vitro against a total number of 50 diverse cancer cell lines revealing that both the position of lipidation as well as the type of lipid, influence their anti-cancer activity and cancer type specificity. Moreover, when used in combination therapy with inhibitor of menin-MLL1 protein interactions, position 2 modified analog SM2 showed strong synergistic anti-cancer properties. The most promising lipid-conjugated analogs SM2 and SM6, showed favorable pharmacokinetics and in vivo activity while administered subcutaneously in the preclinical mouse model. Collectively, our findings suggest that lipid modification of Smacs may be a viable approach in the development of anti-cancer therapeutic leads.


Asunto(s)
Antineoplásicos/uso terapéutico , Proteínas Reguladoras de la Apoptosis/uso terapéutico , Proteínas Mitocondriales/uso terapéutico , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/farmacología , Línea Celular Tumoral , Humanos , Proteínas Mitocondriales/farmacología
13.
Biochim Biophys Acta Biomembr ; 1861(10): 182977, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31077677

RESUMEN

Antimicrobial peptides (AMPs) are a promising class of innate host defense molecules for next-generation antibiotics, as they uniquely target and permeabilize membranes of pathogens. This selectivity has been explained by the electrostatic attraction between these predominantly cationic peptides and the bacterial membrane, which is heavily populated with anionic lipids. However, AMP-resistant bacteria have non-electrostatic countermeasures that modulate membrane rigidity and thickness. We explore how variations in physical properties affect the membrane affinity and disruption process of protegrin-1 (PG-1) in phosphatidylcholine (PC) membranes with altered lipid packing densities and thicknesses. From isothermal titration calorimetry and atomic force microscopy, our results showed that PG-1 could no longer insert into membranes of increasing cholesterol amounts nor into monounsaturated PC membranes of increasing thicknesses with similar fluidities. Prevention of PG-1's incorporation consequently made the membranes more resistant to peptide-induced structural transformations like pore formation. Our study provides evidence that AMP affinity and activity are strongly correlated with the fluidity and thickness of the membrane. A basic understanding of how physical mechanisms can regulate cell selectivity and resistance towards AMPs will aid in the development of new antimicrobial agents.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Antibacterianos/metabolismo , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Calorimetría/métodos , Membrana Celular/metabolismo , Colesterol/metabolismo , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Microscopía de Fuerza Atómica/métodos , Péptidos/química , Péptidos/uso terapéutico , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Electricidad Estática
14.
15.
Biochim Biophys Acta Biomembr ; 1861(3): 677-684, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30615859

RESUMEN

Abundant attention has focused on synaptotagmin's C2 domains, but less is known about the structure and function of its other regions. Here, we synthesized the N-acetylated, C-end amidated and Cys-palmitated peptide (VLTCCFCICK KCLFKKKNKK K) which includes the fatty acylated cysteine residues in the membrane-affiliated domain of synaptotagmin-1. Fourier-transform infrared spectrometry indicated that this peptide's conformation is influenced by environmental polarity. In artificial bilayer membranes, this peptide exhibited abundant ß-structure. Electron microscopy revealed that this peptide also promoted the stacking of liposome membranes. Together these results suggest that the fatty acylated region of synaptotagmin-1 is likely to adopt ß-structure in biological membranes. This preference for ß-structure versus α-helix has functional implications for the role of synaptotagmin-1 in synaptic vesicle exocytosis.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/fisiología , Acilación , Exocitosis/fisiología , Humanos , Liposomas/química , Liposomas/metabolismo , Espectrometría de Masas , Fusión de Membrana , Dominios Proteicos , Estructura Secundaria de Proteína/fisiología , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Transmisión Sináptica , Sinaptotagmina I/metabolismo
16.
J Am Chem Soc ; 140(26): 8246-8259, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29888593

RESUMEN

The HIV-1 glycoprotein, gp41, mediates fusion of the virus lipid envelope with the target cell membrane during virus entry into cells. Despite extensive studies of this protein, inconsistent and contradictory structural information abounds in the literature about the C-terminal membrane-interacting region of gp41. This C-terminal region contains the membrane-proximal external region (MPER), which harbors the epitopes for four broadly neutralizing antibodies, and the transmembrane domain (TMD), which anchors the protein to the virus lipid envelope. Due to the difficulty of crystallizing and solubilizing the MPER-TMD, most structural studies of this functionally important domain were carried out using truncated peptides either in the absence of membrane-mimetic solvents or bound to detergents and lipid bicelles. To determine the structural architecture of the MPER-TMD in the native environment of lipid membranes, we have now carried out a solid-state NMR study of the full MPER-TMD segment bound to cholesterol-containing phospholipid bilayers. 13C chemical shifts indicate that the majority of the peptide is α-helical, except for the C-terminus of the TMD, which has moderate ß-sheet character. Intermolecular 19F-19F distance measurements of singly fluorinated peptides indicate that the MPER-TMD is trimerized in the virus-envelope mimetic lipid membrane. Intramolecular 13C-19F distance measurements indicate the presence of a turn between the MPER helix and the TMD helix. This is supported by lipid-peptide and water-peptide 2D 1H-13C correlation spectra, which indicate that the MPER binds to the membrane surface whereas the TMD spans the bilayer. Together, these data indicate that full-length MPER-TMD assembles into a trimeric helix-turn-helix structure in lipid membranes. We propose that the turn between the MPER and TMD may be important for inducing membrane defects in concert with negative-curvature lipid components such as cholesterol and phosphatidylethanolamine, while the surface-bound MPER helix may interact with N-terminal segments of the protein during late stages of membrane fusion.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/química , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Conformación Proteica , Pliegue de Proteína
17.
Neonatology ; 113(4): 296-304, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29428947

RESUMEN

BACKGROUND: Despite improvements in perinatal care, bronchopulmonary dysplasia (BPD) in extremely premature infants has not decreased. Postnatal surfactant therapy provides symptomatic relief from respiratory distress syndrome, but does not translate into a reduction in BPD. Therefore, the search for effective interventions to prevent BPD continues. OBJECTIVES: Since PPAR-γ agonists have been demonstrated to promote neonatal lung maturation and injury repair, we hypothesized that a formulation of a PPAR-γ agonist, pioglitazone (PGZ) and a synthetic lung surfactant (a surfactant protein B peptide mimic, B-YL) combined would stimulate lung maturation and block hyperoxia-induced neonatal lung injury more effectively than either modality alone. METHODS: One-day-old Sprague-Dawley rat pups were administered PGZ + B-YL via nebulization every 24 h for up to 72 h. The pups were exposed to either 21 or 95% O2, and then sacrificed. Their lungs were examined for markers of lung maturation (levels of PPAR-γ, SP-C and choline-phosphate cytidylyltransferase [CCT-α] and [3H]triolein uptake) and injury repair (bronchoalveolar lavage cell count and protein content, and levels of LEF-1, fibronectin, ALK5, and ß-catenin) by Western blot analysis. RESULTS: Markers of alveolar epithelial/mesenchymal maturation (PPAR-γ, SP-C, CCT-α, and triolein uptake) increased significantly in the PGZ + B-YL group, more than with either drug alone. Similarly, markers of hyperoxia-induced lung injury were blocked effectively with PGZ + B-YL treatment. CONCLUSIONS: Nebulized PPAR-γ agonist PGZ with a synthetic lung surfactant accelerates lung maturation and prevents neonatal hyperoxia-induced lung injury more than either modality alone, with the potential to provide more effective prevention of BPD.


Asunto(s)
Lesión Pulmonar/terapia , Pulmón/crecimiento & desarrollo , PPAR gamma/agonistas , Pioglitazona/farmacología , Precursores de Proteínas/farmacología , Proteolípidos/farmacología , Administración por Inhalación , Animales , Animales Recién Nacidos , Materiales Biomiméticos/farmacología , Diferenciación Celular , Femenino , Hiperoxia/patología , Lesión Pulmonar/fisiopatología , Masculino , Alveolos Pulmonares/crecimiento & desarrollo , Ratas , Ratas Sprague-Dawley , Rosiglitazona , Tensoactivos/farmacología
18.
J Mol Biol ; 430(5): 695-709, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29330069

RESUMEN

Enveloped viruses enter cells by using their fusion proteins to merge the virus lipid envelope and the cell membrane. While crystal structures of the water-soluble ectodomains of many viral fusion proteins have been determined, the structure and assembly of the C-terminal transmembrane domain (TMD) remains poorly understood. Here we use solid-state NMR to determine the backbone conformation and oligomeric structure of the TMD of the parainfluenza virus 5 fusion protein. 13C chemical shifts indicate that the central leucine-rich segment of the TMD is α-helical in POPC/cholesterol membranes and POPE membranes, while the Ile- and Val-rich termini shift to the ß-strand conformation in the POPE membrane. Importantly, lipid mixing assays indicate that the TMD is more fusogenic in the POPE membrane than in the POPC/cholesterol membrane, indicating that the ß-strand conformation is important for fusion by inducing membrane curvature. Incorporation of para-fluorinated Phe at three positions of the α-helical core allowed us to measure interhelical distances using 19F spin diffusion NMR. The data indicate that, at peptide:lipid molar ratios of ~1:15, the TMD forms a trimeric helical bundle with inter-helical distances of 8.2-8.4Å for L493F and L504F and 10.5Å for L500F. These data provide high-resolution evidence of trimer formation of a viral fusion protein TMD in phospholipid bilayers, and indicate that the parainfluenza virus 5 fusion protein TMD harbors two functions: the central α-helical core is the trimerization unit of the protein, while the two termini are responsible for inducing membrane curvature by transitioning to a ß-sheet conformation.


Asunto(s)
Membrana Dobles de Lípidos/química , Virus de la Parainfluenza 5/química , Proteínas Virales de Fusión/química , Secuencia de Aminoácidos , Membrana Celular/química , Colesterol/química , Simulación por Computador , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular/métodos , Virus de la Parainfluenza 5/metabolismo , Péptidos/química , Fosfatidilcolinas/química , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Dispersión del Ángulo Pequeño , Proteínas Virales de Fusión/metabolismo
19.
Gates Open Res ; 2: 13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30234192

RESUMEN

Background: Animal-derived surfactants containing surfactant proteins B (SP-B) and C (SP-C) are used to treat respiratory distress syndrome (RDS) in preterm infants. SP-B (79 residues) plays a pivotal role in lung function and the design of synthetic lung surfactant. Super Mini-B (SMB), a 41-residue peptide based on the N- and C-domains of SP-B covalently joined with a turn and two disulfides, folds as an α-helix hairpin mimicking the properties of these domains in SP-B. Here, we studied 'B-YL', a 41-residue SMB variant that has its four cysteine and two methionine residues replaced by tyrosine and leucine, respectively, to test whether these hydrophobic substitutions produce a surface-active, α-helix hairpin. Methods: Structure and function of B-YL and SMB in surfactant lipids were compared with CD and FTIR spectroscopy, and surface activity with captive bubble surfactometry and in lavaged, surfactant-deficient adult rabbits. Results: CD and FTIR spectroscopy of B-YL in surfactant lipids showed secondary structures compatible with peptide folding as an α-helix hairpin, similar to SMB in lipids. B-YL in surfactant lipids demonstrated excellent in vitro surface activity and good oxygenation and dynamic compliance in lavaged, surfactant-deficient adult rabbits, suggesting that the four tyrosine substitutions are an effective replacement for the disulfide-reinforced helix-turn of SMB. Here, the B-YL fold may be stabilized by a core of clustered tyrosines linking the N- and C-helices through non-covalent interactions involving aromatic rings. Conclusions: 'Sulfur-free' B-YL forms an amphipathic helix-hairpin in surfactant liposomes with high surface activity and is functionally similar to SMB and native SP-B. The removal of the cysteines makes B-YL more feasible to scale up production for clinical application. B-YL's possible resistance against free oxygen radical damage to methionines by substitutions with leucine provides an extra edge over SMB in the treatment of respiratory failure in preterm infants with RDS.

20.
Biophys J ; 111(10): 2176-2189, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851941

RESUMEN

Antimicrobial peptides (AMPs) are a class of host-defense molecules that neutralize a broad range of pathogens. Their membrane-permeabilizing behavior has been commonly attributed to the formation of pores; however, with the continuing discovery of AMPs, many are uncharacterized and their exact mechanism remains unknown. Using atomic force microscopy, we previously characterized the disruption of model membranes by protegrin-1 (PG-1), a cationic AMP from pig leukocytes. When incubated with zwitterionic membranes of dimyristoylphosphocholine, PG-1 first induced edge instability at low concentrations, then porous defects at intermediate concentrations, and finally worm-like micelle structures at high concentrations. These rich structural changes suggested that pore formation constitutes only an intermediate state along the route of PG-1's membrane disruption process. The formation of these structures could be best understood by using a mesophase framework of a binary mixture of lipids and peptides, where PG-1 acts as a line-active agent in lowering interfacial bilayer tensions. We have proposed that rather than being static pore formers, AMPs share a common ability to lower interfacial tensions that promote membrane transformations. In a study of 13 different AMPs, we found that peptide line-active behavior was not driven by the overall charge, and instead was correlated with their adoption of imperfect secondary structures. These peptide structures commonly positioned charged residues near the membrane interface to promote deformation favorable for their incorporation into the membrane. Uniquely, the data showed that barrel-stave-forming peptides such as alamethicin are not line-active, and that the seemingly disparate models of toroidal pores and carpet activity are actually related. We speculate that this interplay between peptide structure and the distribution of polar residues in relation to the membrane governs AMP line activity in general and represents a novel, to our knowledge, avenue for the rational design of new drugs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Dinámicas no Lineales , Porosidad , Unión Proteica , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...